Hur stor är egentligen sannolikheten att alla fyra har fördelningen 4333?
Samarbetspartners
Förbundet
Kontakt
Stadgar
Kansli
Styrelsen
Kommittéer
Tidningen Bridge
Klubb & distrikt
Sök klubb
Välj distrikt
Bridgekurs
Funktionärsutbildning
Bra länkar
Profilering
Medlem
Sök medlem
Mina sidor
Medlemskap
Byte av klubb
Junior
MK
Populära sidor
Forum
Spelprogram
Nyheter i listform
Gamla hemsidan
Syskon
Budproblemet
Tävling
Mina tävlingar
Regler och dokument
Bridgefestivalen
Mindre rutinerade
Simultan
Ruter
Internationellt
Internationellt
Landslag
WBF World Bridge
EBL European Bridge
NBU Nordisk Bridge
SM Par
Open
Dam
Veteran
Mixed
Junior
Nybörjare
Hcp 30+
Lagtävling
Allsvenskan
Svenska Cupen
Chairman’s Cup
SM Lag Open
… Veteran
… Mixed
… Junior




Jag får det till ca 1/286 000. (13!)^8 / (24^36^1252!). Reservation för att timmen är sen.
Jag frågade Grok. Här är vad den svarade. Jag har inte kollat om den räknat rätt
To determine the percentage that all four players in a game of bridge receive a 4-3-3-3 distribution—meaning each player has four cards in one suit and three cards in each of the other three suits—we need to calculate the probability of this event and convert it to a percentage. In bridge, a standard deck of 52 cards is dealt equally among four players, with each receiving 13 cards. Let’s compute this step-by-step.
Step 1: Understanding the 4-3-3-3 Distribution
A 4-3-3-3 distribution for a player means their 13 cards are distributed across the four suits (spades, hearts, diamonds, clubs) as 4 cards in one suit and 3 cards in each of the remaining three suits. For all four players to have this distribution simultaneously, each player must have a “long suit” with 4 cards, and we must determine how these long suits are assigned and how the cards are distributed accordingly.
Step 2: Key Insight on Suit Distribution
Since there are exactly four suits and four players, and each player has one suit with 4 cards, a natural configuration emerges: each player’s long suit could be a different suit. For example, player 1 could have 4 spades, player 2 could have 4 hearts, player 3 could have 4 diamonds, and player 4 could have 4 clubs. If two players had 4 cards in the same suit (e.g., both in spades), they’d take 8 spades, leaving only 5 spades for the other two players (e.g., 3 and 2), but a 4-3-3-3 distribution requires at least 3 cards in each non-long suit, making this impossible. Thus, each player must have their 4-card suit in a distinct suit, corresponding to a permutation of the four suits among the four players.
Step 3: Total Number of Possible Deals
The total number of ways to deal 52 cards to four players, with each receiving 13 cards (where players are distinguishable but cards within a suit are not), is the number of ways to partition 52 cards into four unordered sets of 13:
\frac{52!}{13! \times 13! \times 13! \times 13!} = \frac{52!}{(13!)^4}
This is the denominator of our probability fraction.
Step 4: Number of Favorable Outcomes
Number of Suit Assignments
Since each player’s 4-card suit must be distinct, we assign one suit to each player as their long suit. With 4 suits and 4 players, the number of ways to permute the suits among the players is:
4! = 24
Ways to Distribute Cards for a Specific Assignment
Consider a specific assignment: player 1 has 4 spades, player 2 has 4 hearts, player 3 has 4 diamonds, and player 4 has 4 clubs. For each player:
Their long suit has 4 cards.
Each of their other three suits has 3 cards.
Now, examine each suit:
Spades: Player 1 has 4, players 2, 3, 4 have 3 each. Total = 4 + 3 + 3 + 3 = 13.
Hearts: Player 2 has 4, players 1, 3, 4 have 3 each. Total = 3 + 4 + 3 + 3 = 13.
Diamonds: Player 3 has 4, players 1, 2, 4 have 3 each. Total = 3 + 3 + 4 + 3 = 13.
Clubs: Player 4 has 4, players 1, 2, 3 have 3 each. Total = 3 + 3 + 3 + 4 = 13.
For each suit (e.g., spades):
Choose 4 cards out of 13 for player 1:
\binom{13}{4}
.
From the remaining 9, choose 3 for player 2:
\binom{9}{3}
.
From the remaining 6, choose 3 for player 3:
\binom{6}{3}
.
The last 3 go to player 4:
\binom{3}{3} = 1
.
This is:
\binom{13}{4} \times \binom{9}{3} \times \binom{6}{3} \times \binom{3}{3} = \frac{13!}{4!9!} \times \frac{9!}{3!6!} \times \frac{6!}{3!3!} \times \frac{3!}{3!0!} = \frac{13!}{4!3!3!3!}
Since the suits are distinct and their distributions are independent (the cards of each suit are dealt separately), the number of ways for this specific assignment is:
\left( \frac{13!}{4!3!3!3!} \right)^4
Total Favorable Ways
Multiply by the number of permutations:
24 \times \left( \frac{13!}{4!3!3!3!} \right)^4
Step 5: Probability Calculation
The probability is:
P = \frac{24 \times \left( \frac{13!}{4!3!3!3!} \right)^4}{\frac{52!}{(13!)^4}} = 24 \times \frac{(13!)^4}{(4!3!3!3!)^4} \times \frac{(13!)^4}{52!} = 24 \times \frac{(13!)^8}{(4!3!3!3!)^4 \times 52!}
Step 6: Numerical Computation
Let’s compute this numerically:
13! = 6,227,020,800
4! = 24
,
3! = 6
, so
4!3!3!3! = 24 \times 6^3 = 24 \times 216 = 5,184
\frac{13!}{4!3!3!3!} = \frac{6,227,020,800}{5,184} = 1,201,200
(since
5,184 \times 1,201,200 = 6,227,020,800
)
\left( 1,201,200 \right)^4
52!
and
(13!)^4
are large, so use logarithms for precision:
\log_{10}(P) = \log_{10}(24) + 4 \log_{10}\left( \frac{13!}{4!3!3!3!} \right) - \log_{10}\left( \frac{52!}{(13!)^4} \right)
\log_{10}(24) \approx 1.3802
\log_{10}(1,201,200) = \log_{10}(1.2012 \times 10^6) \approx 6.0794
, so
4 \times 6.0794 = 24.3176
\log_{10}(52!) \approx 67.906
,
\log_{10}(13!) \approx 9.794
, so
\log_{10}\left( \frac{52!}{(13!)^4} \right) = 67.906 - 4 \times 9.794 = 28.73
\log_{10}(P) = 1.3802 + 24.3176 - 28.73 \approx -3.0322
P \approx 10^{-3.0322} \approx 0.000927
Percentage =
0.000927 \times 100 = 0.0927\%
.
Step 7: Final Answer
Rounding to two decimal places, the percentage is approximately 0.09%.
Thus, the percentage that all four players receive a 4-3-3-3 distribution is approximately 0.09%.
Jag gjorde också ett program som simulerade en miljon givar och den gav också svaret 0.0927% så svaret är nog rätt
Ja, jag var uppenbarligen trött. Beräkningen verkar vara korrekt: (13!)^8/(24^3 * 6^12 * 52!). Min slöa miniräknare ger lite andra decimaler, men det är i alla fall i samma storleksordning.
Det blir 0,093142% (jag fick samma när jag ställde upp min enligt nedan, men fegade ur och publicerade inte eftersom Grok+Martin hade samstämmiga uppgifter som inte riktigt matchade min
) Anyway, så här tänkte jag:
Antag att kortleken är blandad så att hand1 är de 13 första korten osv, hand1 = 4-3-3-3, hand2 = 3-4-3-3, hand3 = 3-3-4-3 och hand4 = 3-3-3-4. Antalet kombinationer för de olika händerna blir då:
H1 = C(13;4) * C(13;3) * C(13;3) * C(13;3) * 13! för hand1
H2 = C(9;3) * C(10;4) * C(10;3) * C(10;3) * 13! för hand2
H3 = C(6;3) * C(6;3) * C(7;4) * C(7;3) * 13! för hand3
H4 = C(3;3) * C(3;3) * C(3;3) * C(4;4) * 13! för hand4
Hand4 har ju förvisso sannolikheten 1 om de andra 39 korten är av korrekt färg, men det finns 13! olika sätt de kan vara placerade på i kortlekens sista 13 positioner.
Det finns också 4! olika kombinationer av händerna (hand1 kan vara 3-4-3-3 osv).
Korten kan vara placerade på 52! olika sätt i kortleken.
Den totala sannolikheten ges därför av:
P = H1 * H2 * H3 * H4 * 4! / 52! = 0,00093142
Detta var förmodligen bara ett komplicerat sätt att säga samma sak som Torbjörn
Nu hoppas jag bara ToGu är korrekt…annars får vi trängas i skamvrån.
Heja Thomas!
Det är avrundningsfel. Jag tror att vi har samma siffror. För att göra det enkelt, låt oss säga att det är ungefär 0,09% chans.
Simulering med tio miljoner givar ger 0,0938%.
Alltså ungefär en gång på 40 spelkvällar.
Ska kanske inte tänka på denna fördelning så många gånger då jag spelar?
/janne